Group Buying based on Combinatorial Reverse Auction

Fu-Shiung Hsieh

*Department of Computer Science and Information Engineering, Chaoyang University of Technology
Taiwan, R.O.C.
fshsieh@cyut.edu.tw

Abstract—We formulate group buying problem as a combinatorial reverse auction problem with multiple buyers and multiple sellers. We propose the concept of proxy buyer to deal with this problem. The proxy buyer consolidates the demands from the buyers and then holds a reverse auction to try to obtain the goods from a set of sellers who can provide the goods. The main results include: (1) a problem formulation for the combinatorial reverse auction problem; (2) a solution methodology based on Lagrangian relaxation and (3) analysis of numerical results based on our solution algorithms.

Keywords—Combinatorial auction, e-commerce, optimization.

1. INTRODUCTION

Group buying is an important business model. By forming a coalition, buyers can also improve their bargaining power and negotiate more advantageously with sellers to purchase at a lower price. In this paper, we study coalition formation problem in group buying. We formulate this problem as a combinatorial reverse auction with multiple buyers and multiple sellers. Online auction plays an important role in the electronic market. Auctions are popular, distributed and autonomy preserving ways to allocate items or goods to maximize revenue or minimize cost.

Applying combinatorial auctions in corporations’ procurement processes can lead to significant savings [10] and [11]. There are, however, several problems with combinatorial auctions. Combinatorial auctions have been notoriously difficult to solve from a computational point of view [12]. Combinatorial auction is closely related to the set packing/knapsack problem [13]. It deals with computational aspects and heuristics for solving what is known as the Winner Determination Problem of an auction [14], [15], [16], [17], [18] and [19].

An excellent survey on combinatorial auctions can be found in [1] and [3]. In a combinatorial auction [1], bidders may place bids on combinations of items, which allows the bidders to express complementarities between items instead of having to speculate into an item's valuation about the impact of possibly getting other, complementary items. The combinatorial auction problem can be modeled as a set packing problem (SPP), a well-known NP-complete problem [4]-[8]. Many algorithms have been developed for combinatorial auction problems. For example, in [2], [17], [18] and [19], the authors proposed a Lagrangian Heuristic for a combinatorial auction problem. Exact algorithms have been developed for the SPP problem, including a branch and bound search [8], iterative deepening A* search [7] and the direct application of available CPLEX IP solver [4]. However, in real world, combinatorial reverse auction may take place with multiple buyers and multiple sellers. Motivated by the deficiency of the existing studies, we consider a combinatorial auction problem in which there are multiple buyers and multiple sellers. We propose the concept of proxy buyer to deal with this problem. The proxy buyer consolidates the demands from the buyers and then holds a reverse auction to try to obtain the goods from a set of sellers who can provide the goods. Each seller places bids for each bundle of goods he can provide. The problem is to determine the winners to minimize the total cost for the proxy buyer.

The remainder of this paper is organized as follows. In Section 2, we present the winner determination problem formulation for proxy buyer’s combinatorial reverse auction problem. In Section 3, we propose the Lagrangian...
relaxation algorithms. In Section 4, we present the numerical examples and analyze the results of our solution approach. We conclude this paper in Section 5.

2. GROUP BUYING BASED ON COMBINATORIAL REVERSE AUCTION

In this paper, we first formulate the above combinatorial optimization problem as an integer programming problem. We then develop solution algorithms based on Lagrangian relaxation. Consider an application scenario in which Buyer 1 requests to purchase at least a bundle of items 1A, 2B and 3C from the market, and Buyer 2 requests to purchase at least a bundle of items 2A, 3B and 1C from the market. There are three bidders, Seller 1, Seller 2 and Seller 3 who place bids in the system. Suppose Seller 1 places two bids. The first bid is (2A, 2B, 11P1), and the second bid is (1B, 2C, 32P2). Seller 2 places two bids. The first bid is (1A, 1B, 21P3), and the second bid is (2A, 2C, 22P4). Seller 3 places two bids. The first bid is (1A, 1C, P5) and the second bid is (1B, 2C, P6). We assume that all the bids entered the auction are recorded. A bid is said to be active if it is in the solution. We assume that there is only one bid active for all the bids placed by the same bidder. For this example, the solution for this reverse auction problem is Seller 1: (2A, 2B, P1), Seller 2: (1A, 2B, 2C, P2), and Seller 3: (1B, 2C, P3).

Consider a buyer who requests a set of items to be purchased. Let K denote the number of items requested. Let d_k denote the desired units of the k-th items, where $k \in \{1,2,3,...,K\}$. In a combinatorial auction, there are many bidders to submit a tender. Let I denote the number of bidders in a combinatorial auction. Each $i \in \{1,2,3,...,I\}$ represents a bidder. To model the combinatorial reverse auction problem, the bid must be represented mathematically. We use a vector $b_{ij} = (q_{ij1}, q_{ij2}, q_{ij3},...,q_{ijK}, p_{ij})$ to represent the j-th bid submitted by bidder i, where q_{ijk} is a nonnegative integer that denotes the quantity of the k-th items and p_{ij} is a real positive number that denotes the price of the bundle. As the quantity of the k-th items cannot exceed the quantity d_k, it follows that the constraint $0 \leq q_{ijk} \leq d_k$ must be satisfied. The j-th bid b_{ij} is actually an offer to deliver q_{ijk} units of items for each $k \in \{1,2,3,...,K\}$ a total price of p_{ij}. Let n_i denote the number of bids placed by bidder $i \in \{1,2,3,...,I\}$. To formulate the problem, we use the variable x_{ij} to indicate the j-th bid placed by bidder i is active ($x_{ij}=1$) or inactive ($x_{ij}=0$). The winner determination problem can be formulated as an Integer Programming problem as follows.

Winner Determination Problem (WDP):

$$\min \sum_{n=1}^{N} \sum_{j=1}^{J} x_{nj} p_{nj}$$

 subject to

$$\sum_{n=1}^{N} \sum_{j=1}^{J} x_{nj} q_{njk} \geq \sum_{i=1}^{I} d_{ik} \forall k = 1,2,...,K \quad (2-1)$$

$$x_{nj} \in \{0,1\} \quad (2-2)$$

In WDP problem, we observe that the coupling among different operations is caused by the contention for resources through the minimal resource requirement constraints (2-1).

3. SOLUTION ALGORITHM

For a given Lagrange multiplier λ, the relaxation of constraints (2-1) decomposes the original problem into a number of bidder’s subproblems (BS). These subproblems can be solved independently. That is, the Lagrangian relaxation results in subproblems with a highly decentralized decision making structure. Interactions among subproblems are reflected through Lagrange multipliers, which are determined by solving the following dual problem.

$$\max L(\lambda), \text{ where}$$

$$L(\lambda) = \min \sum_{n=1}^{N} \sum_{j=1}^{J} x_{nj} p_{nj} + \sum_{k=1}^{K} \lambda_k \left(\sum_{i=1}^{I} d_{ik} - \sum_{n=1}^{N} \sum_{j=1}^{J} x_{nj} q_{njk} \right)$$

subject to

$$\sum_{i=1}^{I} \lambda_k d_{ik} + \sum_{n=1}^{N} \sum_{j=1}^{J} L_{n,j}(\lambda), \text{ with}$$

$$L_{n,j}(\lambda) = \min \left(p_{nj} - \sum_{k=1}^{K} \lambda_k q_{njk} \right)$$

subject to

$$x_{nj} \in \{0,1\}$$

$L_{n,j}(\lambda)$ defines a bidder’s subproblems (BS). Our methodology for finding a near optimal solution of WDP is developed based on the result of
Lagrangian relaxation and decomposition. It consists of three parts as follows.

1) An algorithm for solving subproblems

Given \(\lambda \), the optimal solution to BS subproblem \(L_{nj}(\lambda) \) can be solved as follows.

\[
x_{nj} = \begin{cases}
 1 & \text{if } P_{nj} - \sum_{k=1}^{K} \lambda_k q_{njk} < 0 \\
 0 & \text{if } P_{nj} - \sum_{k=1}^{K} \lambda_k q_{njk} \geq 0
\end{cases}
\]

2) A subgradient method for solving the dual problem \(\max_{\lambda \geq 0} L(\lambda) \)

Let \(x^l \) be the optimal solution to the subproblems for given Lagrange multipliers \(\lambda^l \) of iteration \(l \).

We define the subgradient of \(L(\lambda) \) as

\[
g^l_k = \frac{\partial L(\lambda)}{\partial \lambda_k} = \sum_{i=1}^{l} d_{ik} - \left(\sum_{n=1}^{N} \sum_{j=1}^{J} x_n q_{njk} \right),
\]

where \(k \in \{1,2,...,K\} \).

The subgradient method proposed by Polyak [9] is adopted to update \(\lambda \) as follows

\[
\lambda_{k+1} = \begin{cases}
 \lambda_k^l + \alpha^l g^l_k & \text{if } \lambda_k^l + \alpha^l g^l_k \geq 0; \\
 0 & \text{otherwise.}
\end{cases}
\]

where \(\alpha^l = c \frac{\bar{L} - L(\lambda)}{\sum_k (g^l_k)^2} \), \(0 \leq c \leq 2 \) and \(\bar{L} \) is an estimate of the optimal dual cost. The iteration step terminates if \(\alpha^l \) is smaller than a threshold. Polyak proved that this method has a linear convergence rate.

Iterative application of the algorithms in (1) and (2) may converge to an optimal dual solution \((x^*, \lambda^*) \).

3) A heuristic algorithm for finding a near-optimal \(x^* \), feasible solution based on the solution \((x^*, \lambda^*) \) of the relaxed problem

The solution \((x^*, \lambda^*) \) may result in one type of constraint violation due to relaxation: assignment of the quantity of items less than the demand of the items. Our heuristic scheme first checks all the demand constraints \(\sum_{n=1}^{N} \sum_{j=1}^{J} x_{nj} q_{njk} \geq \sum_{i=1}^{I} d_{ik} \) \(\forall k = 1,2,...,K \) that have not been satisfied.

Let \(\{k \mid k \in \{1,2,3,...,K\}, \sum_{n=1}^{N} \sum_{j=1}^{J} x_{nj} q_{njk} < \sum_{i=1}^{I} d_{ik}\} \).

\(K^0 \) denotes the set of demand constraints violated. Let \(N^0 = \{n \mid n \in \{1,2,3,...,N\}, x_{nj}^* = 0\} \).

\(N^0 \) denotes the set of bidders that is not a winner in solution \(x^* \). To make the set of constraints \(K^0 \) satisfied, we first pick \(k \in K^0 \) with

\[
k = \arg \min_{k \in K^0} \sum_{i=1}^{I} d_{ik} - \sum_{n=1}^{N} \sum_{j=1}^{J} x_{nj}^* q_{njk}.
\]

The heuristic algorithm proceeds as follows to make constraint \(k \) satisfied.

Select \(n \in N^0 \) with \(n = \arg \min_{n \in \{1,2,...,N\}, \forall m} P_{nj} \) and set \(x_{nj}^* = 1 \). After performing the above operation, we set \(N^0 \leftarrow N^0 \setminus \{n\} \). If the violation of the \(k \)-th constraint cannot be completely resolved, the same procedure repeats. Eventually, all the constraints will be satisfied. We use \(\pi \) to denote the resulting feasible solution obtained from the above heuristics.
4. NUMERICAL RESULTS AND ANALYSIS

Based on the proposed algorithms for combinatorial reverse auction, we conduct several examples to illustrate the validity of our method.

Example 1: Consider two buyers who will purchase a set of items as specified as follows. For this example, we have

\[
I = 3, \quad N = 7, \quad J = 2, \quad K = 4, d_{11} = 1, d_{12} = 2, d_{13} = 1, d_{21} = 1, d_{22} = 0, d_{31} = 3, d_{32} = 2, d_{33} = 1, d_{34} = 1.
\]

The first bids and the second bids placed by the seven potential sellers' bids are shown as follows.

\[
\begin{align*}
q_{111} &= 2, q_{112} = 3, q_{113} = 1, q_{114} = 0, q_{121} = 0, \\
q_{212} &= 0, q_{213} = 3, q_{214} = 2, q_{211} = 1, q_{212} = 2, \\
q_{313} &= 0, q_{314} = 4, q_{311} = 0, q_{312} = 0, q_{313} = 0, q_{314} = 0, \\
q_{414} &= 1, q_{412} = 0, d_{413} = 0, q_{414} = 0, \\
q_{611} &= 0, q_{612} = 0, q_{613} = 1, q_{614} = 0, q_{711} = 1, q_{712} = 1, q_{713} = 1, q_{714} = 1. \\
q_{122} &= 0, q_{123} = 1, q_{124} = 1, q_{121} = 1, \\
q_{222} &= 0, q_{223} = 0, q_{224} = 2, q_{221} = 1, q_{222} = 0, \\
q_{323} &= 1, q_{324} = 0, q_{321} = 0, q_{322} = 2, q_{323} = 2, \\
q_{424} &= 0, q_{421} = 3, q_{422} = 1, q_{423} = 0, q_{424} = 0, \\
q_{521} &= 0, q_{522} = 0, q_{523} = 1, q_{524} = 0, q_{521} = 0, \\
q_{622} &= 2, q_{623} = 2, q_{624} = 2, q_{721} = 0, \\
q_{722} &= 2, q_{723} = 2, q_{724} = 0.
\end{align*}
\]

Suppose the prices of the bids are:

\[
\begin{align*}
p_{11} &= 48, p_{21} = 85, p_{31} = 100, p_{41} = 23, p_{51} = 6, \\
p_{61} &= 16, p_{71} = 61, \\
p_{12} &= 50, p_{22} = 60, p_{32} = 30, p_{42} = 55, p_{52} = 35, \\
p_{62} &= 60, p_{72} = 60.
\end{align*}
\]

Suppose we initialize the Lagrange multipliers as follows.

\[
\lambda(1) = 5.0, \lambda(2) = 10.0, \lambda(3) = 15.0, \lambda(4) = 20.0.
\]

Our algorithm the subgradient algorithm converges to the following solution:

\[
x_{31}^* = 1, \quad x_{31}^* = 0, \quad x_{41}^* = 1, \quad x_{21}^* = 1, \quad x_{42}^* = 1, \quad x_{52}^* = 1, \quad x_{62}^* = 1. \quad x^* \text{ is also an optimal solution.}
\]

The duality gap of the solution is 3.75%. The duality gap is within 5%. This means the solution methodology generates near optimal solution. Despite the duality gap is not zero, the solution is also an optimal solution for this example.

5. CONCLUSION

In this paper we deal with group buying based on combinatorial reverse auction. Most studies on combinatorial reverse auction focus on auction with single buyer/multiple sellers. Combinatorial auction enables several bidders to bid on different combination of goods simultaneously according to personal preferences and offer those items a combined price. We propose the concept of proxy buyer to deal with this problem. The proxy buyer consolidates the demands from the buyers and then holds a reverse auction to try to obtain the goods from a set of sellers who can provide the goods. Each seller places bids for each bundle of goods he can provide. We formulate a winner determination optimization problem for combinatorial auction with a proxy buyer. The demands of the proxy buyer impose additional constraints on determination of the winners. The problem is to determine the winners to minimize the total cost to acquire the required items. The main results include: (1) a problem formulation for the combinatorial reverse auction problem; (2) a solution methodology based on Lagrangian relaxation and (3) analysis of numerical results based on our solution algorithms. Analysis of the numerical results shows that our algorithm can generate near-optimal solution within acceptable CPU time.

ACKNOWLEDGMENT

This paper is supported in part by National Science Council of Taiwan under Grant NSC97-2410-H-324-017-MY3.

REFERENCES

